Technology/Business Opportunity -- Additive Manufacturing Processes for Cellular Fluidics

expired opportunity(Expired)
From: Federal Government(Federal)
TB515-22

Basic Details

started - 23 Sep, 2022 (18 months ago)

Start Date

23 Sep, 2022 (18 months ago)
due - 22 Sep, 2022 (18 months ago)

Due Date

22 Sep, 2022 (18 months ago)
Bid Notification

Type

Bid Notification
TB515-22

Identifier

TB515-22
ENERGY, DEPARTMENT OF

Customer / Agency

ENERGY, DEPARTMENT OF (7807)ENERGY, DEPARTMENT OF (7807)LLNS – DOE CONTRACTOR (231)
unlockUnlock the best of InstantMarkets.

Please Sign In to see more out of InstantMarkets such as history, intelligent business alerts and many more.

Don't have an account yet? Create a free account now.

Opportunity: Lawrence Livermore National Laboratory (LLNL), operated by the Lawrence Livermore National Security (LLNS), LLC under contract no. DE-AC52-07NA27344 (Contract 44) with the U.S. Department of Energy (DOE), is offering the opportunity to enter into a collaboration partnership to further develop and commercialize its additive manufacturing processes for cellular fluidics.Background:Many biological and living systems have evolved to optimize fluidic transport.  However, living things are exceptionally complex and very difficult to replicate, and human-made microfluidic devices (which are typically planar and enclosed) are highly limited for multiphase process engineering.  Here we introduce the concept of cellular fluidics: a platform of unit-cell-based, 3D structures – enabled by 3D printing methods – for the deterministic control of multiphase flow, transport, and reaction processes.Description:  Using 3D printing methods, LLNL has developed a platform of unit-cell-based 3D
structures that can be “programmed” through architected design of cell type, size, and relative density.  It includes analytical and numerical approaches for the prediction of fluid behavior in these ordered structures.  The technology demonstrates gas-liquid transport and programming flow paths in 3D.More details are described in the Nature publicatioin:  Dudukovic, N.A., Fong, E.J., Gemeda, H.B. et al. Cellular fluidics. Nature 595, 58–65 (2021). https://doi.org/10.1038/s41586-021-03603-2Advantages:Control of flow properties in three dimensionsGreater surface area per unit volume of fluidCapability to 3D-print more complex lattice designsBenefits biopatterning for 3D bioreactors and cell culturesCapable for scalable, high-throughput productionPotential Applications:  Applications requiring multiphase processesBenefits devices that rely on chemical reactions, heat and mass transport at interfacesElectrochemical reaction catalysisSelective coating technologiesCellular fluidics may transform the design space for spatial and temporal control of multiphase transport and reaction processesDevelopment Status:  There is a portfolio of one issued and three patent applications:U.S. Patent No. 11,130,131U.S. Patent Application Publication No. 2021/0053056U.S. Patent Application Publication No. 2021/0077999U.S. Patent Application Publication No. 2021/0268403LLNL is seeking industry partners with a demonstrated ability to bring such inventions to the market. Moving critical technology beyond the Laboratory to the commercial world helps our licensees gain a competitive edge in the marketplace. All licensing activities are conducted under policies relating to the strict nondisclosure of company proprietary information.  Please visit the IPO website at https://ipo.llnl.gov/resources for more information on working with LLNL and the industrial partnering and technology transfer process.Note:  THIS IS NOT A PROCUREMENT.  Companies interested in commercializing LLNL's Cellular Fluidics should provide a written statement of interest, which includes the following:1.   Company Name and address.2.   The name, address, and telephone number of a point of contact.A description of corporate expertise and facilities relevant to commercializing this technology.Written responses should be directed to:Lawrence Livermore National LaboratoryInnovation and Partnerships OfficeP.O. Box 808, L-795Livermore, CA  94551-0808Attention:  TB515/22Please provide your written statement within thirty (30) days from the date this announcement is published to ensure consideration of your interest in LLNL's Cellular Fluidics.

Livermore ,
 CA  94551  USALocation

Place Of Performance : N/A

Country : United States

Classification

naicsCode 541714Research and Development in Biotechnology (except Nanobiotechnology)
pscCode AJ12General Science and Technology R&D Services; General science and technology; Applied Research